Acute-Phase-HDL Remodeling by Heparan Sulfate Generates a Novel Lipoprotein with Exceptional Cholesterol Efflux Activity from Macrophages
نویسندگان
چکیده
During episodes of acute-inflammation high-density lipoproteins (HDL), the carrier of so-called good cholesterol, experiences a major change in apolipoprotein composition and becomes acute-phase HDL (AP-HDL). This altered, but physiologically important, HDL has an increased binding affinity for macrophages that is dependent on cell surface heparan sulfate (HS). While exploring the properties of AP-HDLratioHS interactions we discovered that HS caused significant remodeling of AP-HDL. The physical nature of this change in structure and its potential importance for cholesterol efflux from cholesterol-loaded macrophages was therefore investigated. In the presence of heparin, or HS, AP-HDL solutions at pH 5.2 became turbid within minutes. Analysis by centrifugation and gel electrophoresis indicated that AP-HDL was remodeled generating novel lipid poor particles composed only of apolipoprotein AI, which we designate beta2. This remodeling is dependent on pH, glycosaminoglycan type, is promoted by Ca(2+) and is independent of protease or lipase activity. Compared to HDL and AP-HDL, remodeled AP-HDL (S-HDL-SAA), containing beta2 particles, demonstrated a 3-fold greater cholesterol efflux activity from cholesterol-loaded macrophage. Because the identified conditions causing this change in AP-HDL structure and function can exist physiologically at the surface of the macrophage, or in its endosomes, we postulate that AP-HDL contains latent functionalities that become apparent and active when it associates with macrophage cell surface/endosomal HS. In this way initial steps in the reverse cholesterol transport pathway are focused at sites of injury to mobilize cholesterol from macrophages that are actively participating in the phagocytosis of damaged membranes rich in cholesterol. The mechanism may also be of relevance to aspects of atherogenesis.
منابع مشابه
Cholesterol efflux by acute-phase high density lipoprotein: role of lecithin: cholesterol acyltransferase.
HDL plays an initial role in reverse cholesterol transport by mediating cholesterol removal from cells. During infection and inflammation, several changes in HDL composition occur that may affect the function of HDL; therefore, we determined the ability of acute-phase HDL to promote cholesterol removal from cells. Acute-phase HDL was isolated from plasma of Syrian hamsters injected with lipopol...
متن کاملClinical and Population Studies HDL Remodeling During the Acute Phase Response
Objective—The purpose of this study was to examine the interactive action of serum amyloid A (SAA), group IIA secretory phospholipase A2 (sPLA2-IIA), and cholesteryl ester transfer protein (CETP) on HDL remodeling and cholesterol efflux during the acute phase (AP) response elicited in humans after cardiac surgery. Methods and Results—Plasma was collected from patients before (pre-AP), 24 hours ...
متن کاملHDL remodeling during the acute phase response.
OBJECTIVE The purpose of this study was to examine the interactive action of serum amyloid A (SAA), group IIA secretory phospholipase A(2) (sPLA(2)-IIA), and cholesteryl ester transfer protein (CETP) on HDL remodeling and cholesterol efflux during the acute phase (AP) response elicited in humans after cardiac surgery. METHODS AND RESULTS Plasma was collected from patients before (pre-AP), 24 ...
متن کاملRole of serum amyloid A during metabolism of acute-phase HDL by macrophages.
The serum amyloid A (SAA) family of proteins is encoded by multiple genes that display allelic variation and a high degree of homology in mammals. Triggered by inflammation after stimulation of hepatocytes by lymphokine-mediated processes, the concentrations of SAA may increase during the acute-phase reaction to levels 1000-fold greater than those found in the noninflammatory state. In addition...
متن کاملEffects of Myeloperoxidase-Induced Oxidation on Antiatherogenic Functions of High-Density Lipoprotein
High-density lipoprotein (HDL) has protective effects against the development of atherosclerosis; these effects include reverse cholesterol transport, antioxidant ability, and anti-inflammation. Myeloperoxidase (MPO) secreted by macrophages in atherosclerotic lesions generates tyrosyl radicals in apolipoprotein A-I (apoA-I) molecules, inducing the formation of apoA-I/apoA-II heterodimers throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008